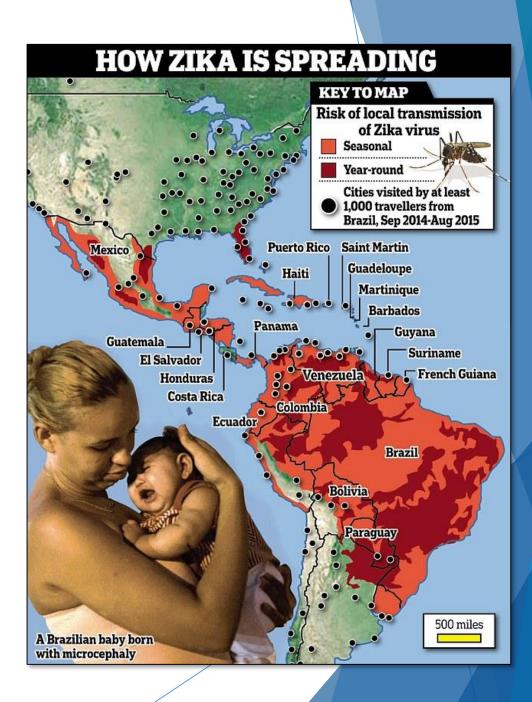
Hunting Zika Virus using Machine Learning

Subho Majumdar

University of Minnesota, School of Statistics

04/24/2017



The Zika problem

Recently there is a Zika outbreak in Brazil and it is spreading fast.

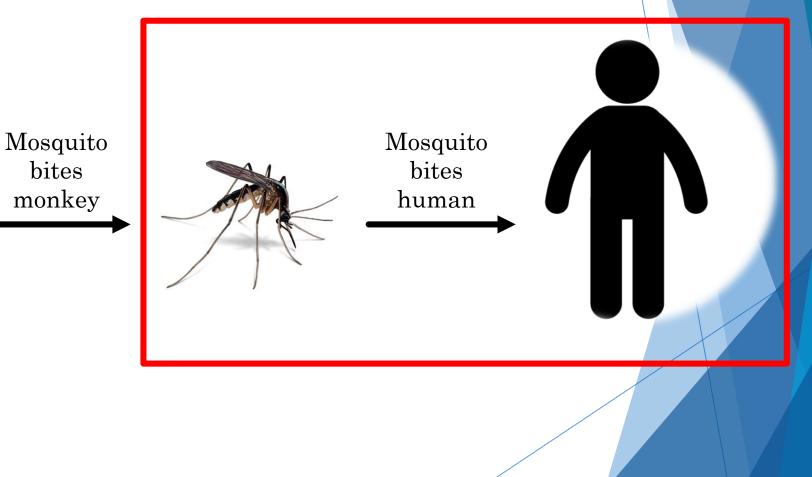
Symptoms include rash, fever, muscle and joint pain, headache;

Zika is non-lethal but causes Microcephaly (= small head size) and eye problems in babies of infected mothers.

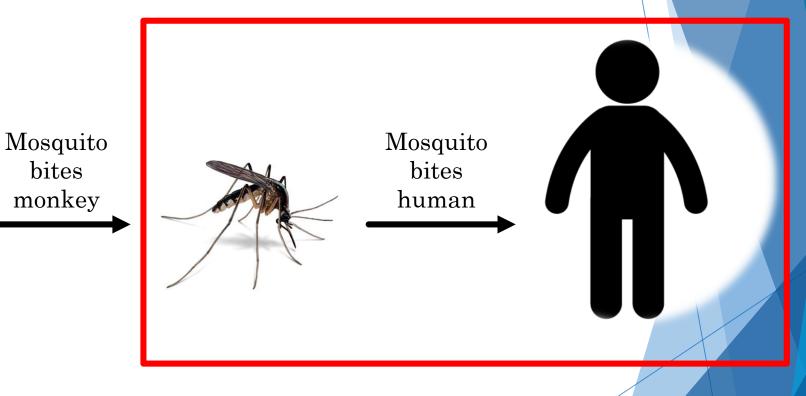
How Zika spreads

- The virus naturally resides in the blood of host animals;
- The animals don't get infected because they have antibodies, or have subclinical infections;
- Virus survives by passing from generation to generation of animals.

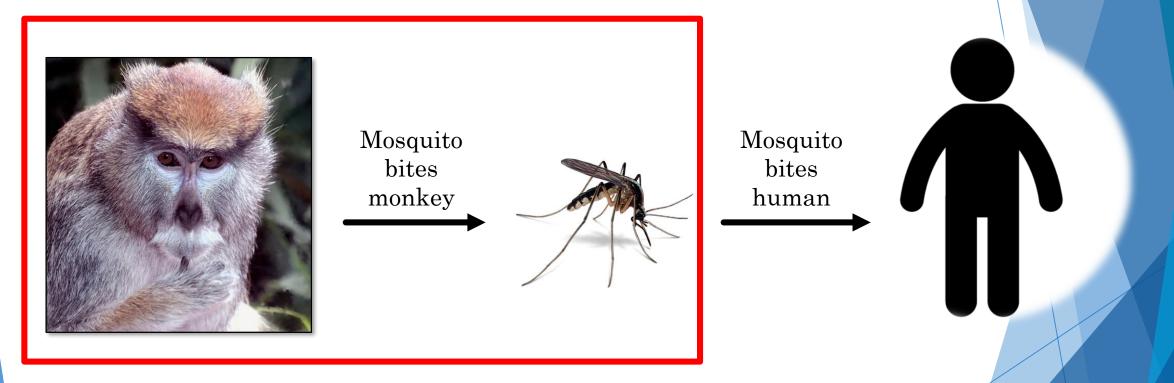
Known primate hosts of Zika


How Zika spreads

Mosquito bites monkey		Mosquito bites human	
-----------------------------	--	----------------------------	--


Present: REACTIVE approach to contain outbreak


Present: REACTIVE approach to contain outbreak



Eradicate mosquitos in spillover areas Not Good!

Objective : PROACTIVE approach to stop outbreak

Objective : PROACTIVE approach to stop outbreak

Find out the source animals to prioritize mosquito eradication efforts **Kills the problem at source** Data

Dataset 1: Reservoir status

Animal	Carries Zika?	Carries Dengue?	Carries Yellow fever?	
Monkey 1	No	Yes	No	
Monkey 2	Yes	No	No	
Monkey 3	No	Yes	No	
Monkey 4	No	No	No	
Monkey 5	Yes	No	Yes	
Monkey 6	No	Yes	No	

376 monkeys, 8 diseases

Dataset 2: Animal characteristics

Animal	Body mass	Litter size	Maximum longevity	
Monkey 1				
Monkey 2				
Monkey 3				
Monkey 4				
Monkey 5				
Monkey 6				

50 characteristics

Challenges

Dataset 1: Reservoir status

Animal	Carries Zika?	Carries Dengue?	Carries Yellow fever?	
Monkey 1	No	Yes	No	
Monkey 2	Yes	No	No	
Monkey 3	No	Yes	No	
Monkey 4	No	No	No	
Monkey 5	Yes	No	Yes	
Monkey 6	No	Yes	No	
	•••	•••		

376 monkeys, 8 diseases

- Reservoirs are extremely rare;
- Only 4 known reservoirs for Zika;
- There are only 26 positive entries in this matrix;
- Need specialized methods to deal with the situation.

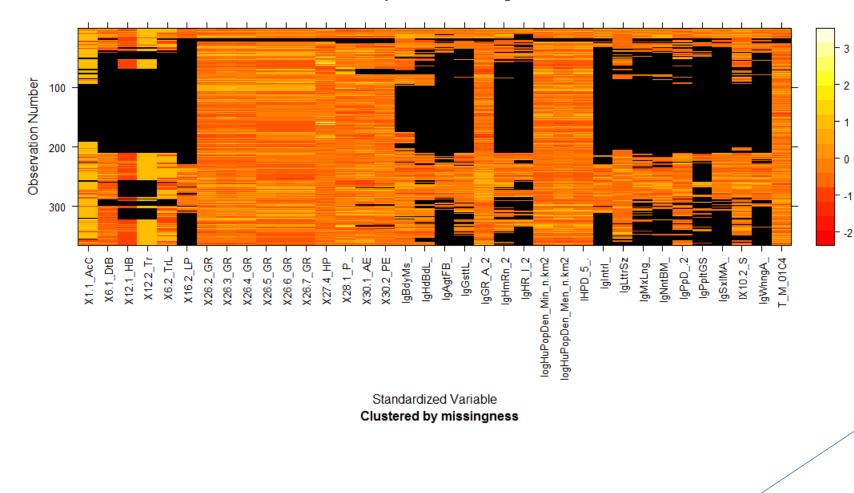
Challenges

- Data on animal characteristics are not complete: lot of entries are missing in many animals;
- Some characteristics are almost completely missing for all animals;
- Some animals have almost all variables missing;

Dataset 2: Animal characteristics

Animal	Body mass	Litter size	Maximum longevity		
Monkey 1					
Monkey 2					
Monkey 3					
Monkey 4					
Monkey 5					
Monkey 6					

Challenges


- Data on animal characteristics are not complete: lot of entries are missing in many animals;
- Some characteristics are almost completely missing for all animals;
- Some animals have almost all variables missing;

Dataset 2: Animal characteristics

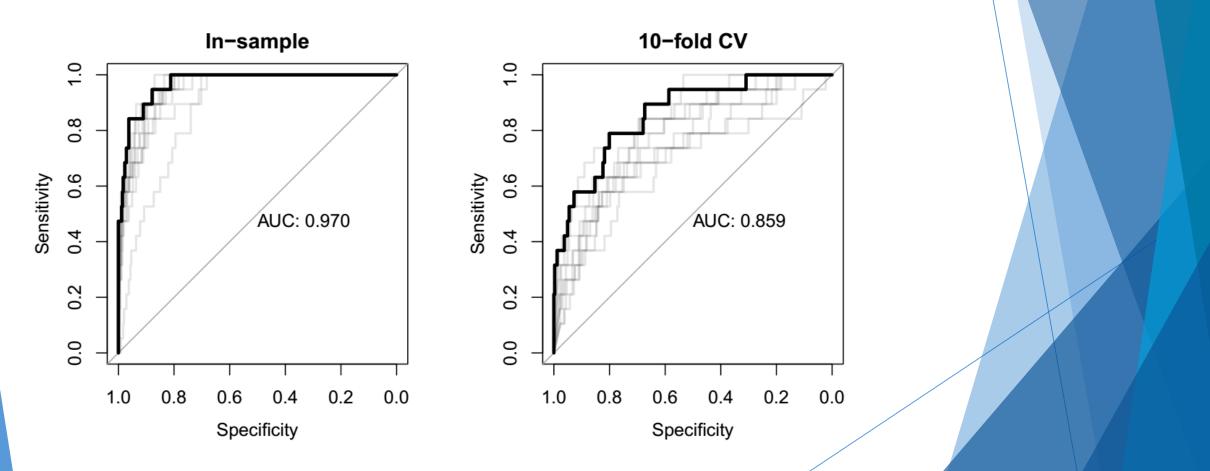
Animal	Body mass	Litter size	Maximum longevity	
Monkey 1				
Monkey 2				
Monkey 3				
Monkey 4				
Monkey 5				
Monkey 6				

The missing data problem

Dark represents missing data

Modelling approach

1. Missing data imputation:


use a **multiple imputation** procedure called Multiply Imputed Chained Equation (MICE: Raghunathan *et al*, 2001)

2. Predictive model:

- ► Model reservoir status for all Zika-like simultaneously;
- Use a Bayesian model that assumes the response variable is generated through a hierarchical process, taking into account covariate information in a nonlinear fashion (Rai *et al*, 2015)

Validation

Stratified 10-fold CV: make folds for positive and negative classes separately and group together. Needed because positive class is rare.

Results

- ▶ We are interested in high-risk animals in South America that haven't been detected yet.
- ► Top 3 high-risk species:

White-fronted Capuchin monkey (Cebus albifrons)

Common squirrel monkey (Saimiri sciureus)

Weeper Capuchin monkey (Cebus olivaceus)

Trait profiles of high-risk animals

	Importance	mean.low	mean.hi
$logHuPopDen_Min_n.km2$	0.61	2.12	1.09
$\log GR_Area_km2$	0.5	9.59	13.21
$X26.2_GR_MaxLat_dd$	0.48	-6.95	11.09
$logAgeatFirstBirth_d$	0.47	6.71	7.12
$logHuPopDen_5p_n.km2$	0.47	2.19	1.61
$logNeonateBodyMass_g$	0.47	3.84	5.34
$logHomeRange_Indiv_km2$	0.4	-2.68	-0.48
paleotropical	0.38	0.72	0.75
$logHomeRange_km2$	0.36	-3.06	-0.89

• Larger animals that have high body mass, longer gestation periods and larger social groups seem to be more likely reservoirs

What to do with the outputs?

- Work with disease ecology researchers to collect blood samples from these monkeys and test for presence of Zika virus;
- If a new reservoir is detected, focus on mosquito eradication efforts around the animal's habitat;
- Provide a much needed empirical baseline for future similar studies regarding a proactive approach towards infectious disease management.

Future work

- Integrate with the Prospector tool (Krause, Perer and Ng, 2016) to understand how risk scores are affected by different levels of a covariate, i.e. partial dependence plots;
- Modify outcomes for unknown reservoirs based on their geographic range overlap with known reservoirs, as well as incorporate primate-mosquito interactions;
- Extend the underlying model to incorporate covariate information on the different viruses;
- Build a unified framework for simultaneously imputing missing data and modelling the outcomes.

References

- First detection of Zika virus in neotropical primates in Brazil: a possible new reservoir. Favoretto, S.; Araujo, D.; Oliviera, D.; Duarte, N.; Mesquita, F.; Zanotto, P. and Durigon, E. Available in bioRxiv: <u>http://dx.doi.org/10.1101/049395</u>, April **2016**.
- Han, B.; Schmidt, J. P.; Bowden, S. E. and Drake, J. M. Rodent reservoirs of future zoonotic diseases. *Proc. Natl. Acad. Sci.*, 2015, 112(22): 7039-7044.
- Raghunathan, T.W.; Lepkowksi, J.M.; Van Hoewyk, J. and Solenbeger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. *Survey Methodology*, **2001**, 27: 85–95.
- Rai, P.; Hu, C.; Henao, R. and Carin, L. Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings. In: Advances in Neural Information Processing Systems 29 (NIPS 2015), 2015, 3222-3230.
- ▶ Krause, J.; Perer, A. and Ng, K. Interacting with Predictions: Visual Inspection of Blackbox Machine Learning Models. In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI 2016)*, **2016**, 5686-5697.

Acknowledgements

- Barbara Han, Cary Institute of Ecosystem Studies;
- Saška Mojsilović and Kush R. Varshney;
- Social Good mentors: Flavio D. Calmon, Abhishek Kumar, Raya Horesh, Adam Perer, Elisa B. Von Marschall, Dennis Wei;
- Prasanna Sattigeri and Karthi Ramamurthy.

THANK YOU!