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Summary of the talk

Estimation of graphs from high-dimensional data is of importance for
biological processes, financial systems or social interactions;

Nodes in such data can have a natural hierarchical structure, e.g. Genes
affecting proteins affecting metabolites, or macroeconomic indicators like
interest rates or price indices affecting stock prices;

There are within layer and between-layer connections in such structures.
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Summary

These connections can be different inside different organs, experimental
conditions, or for different subtypes of the same disease;

Liver Kidney Lungs
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Connection to precision medicine
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Connection to precision medicine

The connections between layers can be different for different patient profiles.

Treatment 1 Treatment 2 Treatment 3
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What we do

Statistical inference for hierarchical graphical models.

In this work we propose a general statistical framework based on graphical
models for horizontal (i.e. across conditions or subtypes) and vertical (i.e.
across different layers containing data on molecular compartments)
integration of information in data from such complex biological structures.

Specifically, we perform joint estimation and hypothesis testing for all the
connections in these structures.
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Gaussian Graphical models

X = (X1, . . . ,Xp)T ∼ Np(0,Σx )

Non-zero entries in the precision matrix Ωx = Σ−1
x gives edges of the network.

Sparse estimation of Ωx : Meinshausen and Bühlmann (2006)
Multiple testing and error control: Drton and Perlman (2007).
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Multiple Gaussian Graphical models

Xk = (X k
1 , . . . ,X

k
p )T ∼ Np(0,Σk

x ); Ωk
x = (Σk

x )−1

k = 1,2, . . . ,K

k = 1 k = 2 k = 3

Joint estimation of {Ωk
x}: Guo et al. (2011); Ma and Michailidis (2016)

Difference and similarity testing with FDR control: Liu (2017)
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Multi-Layered Gaussian Graphical models

E = (E1, . . . ,Eq)T ∼ Nq(0,Σy );

F = (F1, . . . ,Fr )T ∼ Nr (0,Σz);

Ωy = (Σy )−1,Ωz = (Σz)−1

Y = XT B + E,
Z = YT C + F.

Ωx ,Ωy ,Ωz give undirected
within-layer edges, while B,C
gives directed between-layer
edges.

Sparse estimation of the
components: Lin et al. (2016).
Testing: ??

X

Y

Z
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Multiple Multi-layered Gaussian Graphical models

Layer X

Layer Y

Layer Z

k = 1 k = 2 k = 3

X1

Y1

Z1

X2

Y2

Z2

X3

Y3

Z3

Ek = (Ek
1 , . . . ,E

k
q )T ∼ Nq(0,Σk

y ); Ωk
y = (Σk

y )−1

Fk = (F k
1 , . . . ,F

k
r )T ∼ Nr (0,Σk

z ); Ωk
y = (Σk

y )−1

Yk = (Xk )T Bk + Ek ,

Zk = (Yk )T Ck + Fk ; k = 1,2, . . . ,K
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What we do

We decompose the multi-layer problem into a series of two layer
problems.

We estimate {Ωk
x ,Ω

k
y ,Bk} jointly for all k from a single model;

Incorporate structural informartion using group sparsity,
Propose algorithm to compute solutions, derive their convergence
properties.

Devise a full pairwise testing procedure for rows of Bk ;
For K = 2, propose a test for row-wise differences b1

i − b2
i ;

Perform multiple testing for elementwise differences b1
ij = b2

ij , j = 1, 2, . . . , q
within a row.

Use simulations for performance evaluation.
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Preliminaries

Y = {Y1, . . . ,YK},X = {X1, . . . ,XK};
Ωx = {Ω1

x , . . . ,Ω
K
x },Ωy = {Ω1

y , . . . ,Ω
K
y },B = {B1, . . . ,BK};

Linear model: y = Xβ + ε, with X ∈ Rn×p,β ∈ Rp, ε ∼ N (0, σ2I) with σ > 0;

Lasso: β̂ = argminβ ‖y− Xβ‖2/n + λ‖β‖1;

Group lasso:

β̂ = argmin
β

1
n
‖y− Xβ‖2 + λ

∑
g∈G
‖βg‖

where G is a partition of {1,2, . . . ,p}.

Example: p = 7,G = {[1,2], [3,4], [5,6,7]}. Then∑
g∈G
‖βg‖ =

√
β2

1 + β2
2 +

√
β2

3 + β2
4 +

√
β2

5 + β2
6 + β2

7
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Estimation of X-network

1 Trick: Take a node- figure out who its neighbors are. Repeat this for all
nodes. This infers the full graph structure.

2 Estimate neighborhood coefficients of each X-node, say ζi = (ζ1
i , . . . , ζ

K
i )

using the group information on the X-network:

ζ̂i = argmin
ζi

{
K∑

k=1

1
nk
‖Xk

i − Xk
−iζ

k
i ‖2 + νnP(ζ)

}

3 Non-zero supports of ζi , i = 1, ...,p give a skeleton set for the
corresponding graphs. Recover precision matrices as maximum
likelihood estimates over these restricted skeleton sets.

Joint Structural Estimation Method (JSEM)
Ma and Michailidis (2016)
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Estimating XY and Y-networks: the objective function

Layer X

Layer Y Y1

X1

Y2

X2 X3

Y3

Yk
j − Ek

−jθ
k
j − Xk Bk

j

Ek = Yk − Xk Bk
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The objective function

Layer X

Layer Y Y1

X1

Y2

X2 X3

Y3

K∑
k=1

1
nk

q∑
j=1

∥∥∥Yk
j − (Yk

−j − Xk Bk
−j )θ

k
j − Xk Bk

j

∥∥∥2

+ λn

∑
h∈H

‖B[h]‖+ γn

∑
j′ 6=j,g∈Gjj′

‖θ[g]
jj′ ‖

(Ask me what they are later)
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The estimator

Joint Multiple Multi-Level Estimation (JMMLE)

1 Solve for {B,Θ}:

{B̂, Θ̂} = argmin
B,Θ


K∑

k=1

1
nk

q∑
j=1

∥∥∥Yk
j − (Yk

−j − Xk Bk
−j )θ

k
j − Xk Bk

j

∥∥∥2

+ λn

∑
h∈H

‖B[h]‖ +γn

∑
j′ 6=j,g∈Gjj′

‖θ[g]
jj′ ‖


2 Recover Y-precision matrices as MLE over the Y-network skeleton sets
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Computational algorithm

{B̂, Θ̂} = argmin
B,Θ

{f (Y,X ,B,Θ) + P(B) + Q(Θ)}

The objective function is biconvex, so we solve the above by the following
alternating iterative algorithm:

1 Start with initial estimates of B and Θ, say B(0),Θ(0).
2 Iterate:

B(t+1) = argmin
B

{
f (Y,X ,B,Θ(t)) + Q(B)

}
Θ(t+1) = argmin

Θ

{
f (Y,X ,B(t+1),Θ) + P(Θ)

}
3 Continue till convergence.
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Non-asymptotic error bounds for B̂

For λn ≥ 4
√
|hmax|R0

√
log(pq)

n , the following hold with probability approaching
1 as n→∞,

‖β̂ − β0‖1 ≤
48
√
|hmax|sβλn

ψ∗

‖β̂ − β0‖ ≤
12
√

sβλn

ψ∗∑
h∈H

‖β[h] − β
[h]
0 ‖ ≤

48sβλn

ψ∗

with ψ∗,R0 being constants, and β = (vec(B1)T , . . . , vec(BK )T )T , |hmax| the
maximum group size in β0 (the true β) and sβ the sparsity of β0.
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Error bounds for Θ̂, Ω̂

For γn = 4
√
|gmax|Q0

√
log(pq)

n , the following hold with probability approaching
1 as n→∞,

‖Θ̂j −Θ0,j‖F ≤
12
√

sjγn

ψ∑
j 6=j′,g∈G jj′

y

‖θ̂[g]

jj′ − θ
[g]
0,jj′‖ ≤

48sjγn

ψ

1
K

K∑
k=1

‖Ω̂k
y − Ωk

y‖F ≤ O

(√
Sγn√
K

)

with ψ,Q0 being constants, |gmax| the maximum group size in Θ0, sj the
sparsity of Θj and S =

∑
j sj .
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Motivation

Find out if an upper layer variable has a significant downstream effects,
e.g. if a gene influences the activity of any protein.

How does this downstream effect vary across different horizontal
category, e.g. gene has downstream effect on patient profile 1 but not on
profile 2.

Which of the downstream effects are significant? How do they differ
across subtypes? e.g. which exact proteins does the gene affect for each
patient profile
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High-dimensional hypothesis testing

Debiased estimators (Zhang and Zhang, 2014)

Lasso: β̂ = argminβ ‖y− Xβ‖2/n + λ‖β‖1;
Debiased estimator:

β̂
(deb)
j = β̂j +

zT
j (y− Xβ̂)

zT xj
,

where zj is the vector of residuals from the `1-penalized regression of xj
on X−j .
Asymptotic normal distribution:

β̂
(deb)
j − β0

j

‖zj‖/|zT
j xj |

∼ N(0, σ2)

The debiasing factor for the j th coefficient is obtained by taking residuals from
the regularized regression and scale them using the projection of xj onto a
space approximately orthogonal to it.
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What we do

We propose a debiased estimator for bk
i that makes use of already

computed model quantities, and establish asymptotic properties of its
scaled version,

We assume K = 2, and propose an asymptotic test for detecting
differential effects of a variable in the upper layer, i.e. testing for the null
hypothesis H0 : b1

0i = b2
0i ,

We also propose pairwise simultaneous tests with False Discovery Rate
(FDR) control across j = 1, . . . ,q for detecting the elementwise
differences b1

0ij = b2
0ij .
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Simulation setup

Number of categories (K ) = 5;
Structured {Ωx}, {Ωy},B;
Groups in B,Ωx are non-zero with probability 5/p, and their elements
come from Unif[−1,−0.5] ∪ [0.5,1];
Groups in Ωy are non-zero with probability 5/q, and their elements come
from Unif[−1,−0.5] ∪ [0.5,1];
We generate size-n i.i.d. samples Xk from Np(0,Σk

x ), and Ek from
Np(0,Σk

y ), then obtain Yk = Xk Bk + Ek ;
50 Replications.
Tuning parameters:

γn ∈ {0.3,0.4, ...,1}
√

log q
n

, λn ∈ {0.4,0.6, ...,1.8}
√

log p
n
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Evaluation metrics

1 True positive Rate-

TPR(B̂) =
1
K

K∑
k=1

| supp(B̂k ) ∪ supp(Bk
0)|

| supp(Bk
0)|

2 True negatives-

TNR(B̂) =
1
K

K∑
k=1

| suppc(B̂k ) ∪ suppc(Bk
0)|

| suppc(Bk
0)|

3 Relative error in Frobenius norm-

RF(B̂) =
1
K

K∑
k=1

‖B̂k − Bk
0‖F

‖Bk
0‖F

4 Matthews correlation coefficient (MCC).

Same metrics are used for Θ̂.
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Results

(πx , πy ) (p, q, n) Method TPR TNR MCC RF
(5/p, 5/q) (60,30,100) JMMLE 0.97(0.02) 0.99(0.003) 0.96(0.014) 0.24(0.033)

Separate 0.96(0.018) 0.99(0.004) 0.93(0.014) 0.22(0.029)
(30,60,100) JMMLE 0.97(0.013) 0.99(0.002) 0.96(0.008) 0.27(0.024)

Separate 0.99(0.009) 0.99(0.003) 0.93(0.017) 0.18(0.021)
(200,200,150) JMMLE 0.98(0.011) 1.0(0) 0.99(0.005) 0.16(0.025)

Separate 0.99(0.001) 0.99 (0.001) 0.88(0.009) 0.18(0.007)
(300,300,150) JMMLE 1.0(0.001) 1.0(0) 0.99(0.001) 0.14 (0.015)

Separate 1.0(0.001) 0.99(0.001) 0.84(0.01) 0.21(0.007)
(30/p, 30/q) (200,200,100) JMMLE 0.97(0.017) 1.0(0) 0.98(0.008) 0.21(0.032)

Separate 0.32(0.01) 0.99(0.001) 0.49(0.009) 0.85(0.06)
(200,200,200) JMMLE 0.99(0.006) 1.0(0) 0.99(0.007) 0.13(0.016)

Separate 0.97(0.004) 0.98(0.001) 0.93(0.002) 0.19(0.07)

Table of outputs for estimation of regression matrices, giving empirical mean and standard deviation (in
brackets) of each evaluation metric over 50 replications.
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Results

(πx , πy ) (p, q, n) Method TPR TNR MCC RF
(5/p, 5/q) (60,30,100) JMMLE 0.76(0.018) 0.90(0.006) 0.61(0.024) 0.32(0.008)

Separate 0.77(0.031) 0.92(0.007) 0.56(0.03) 0.51(0.017)
JSEM 0.24(0.013) 0.8(0.003) 0.05(0.015) 1.03(0.002)

(30,60,100) JMMLE 0.7(0.018) 0.94(0.002) 0.55(0.018) 0.3(0.005)
Separate 0.76(0.041) 0.89(0.015) 0.59(0.039) 0.49(0.014)

JSEM 0.13(0.005) 0.9(0.001) 0.03(0.007) 1.04(0.001)
(200,200,150) JMMLE 0.68(0.017) 0.98(0) 0.48(0.013) 0.26(0.002)

Separate 0.78(0.019) 0.97(0.001) 0.55(0.012) 0.6(0.007)
JSEM 0.05(0.002) 0.97(0) 0.02(0.002) 1.01(0)

(300,300,150) JMMLE 0.71(0.014) 0.98(0) 0.44(0.008) 0.25(0.002)
Separate 0.71(0.017) 0.98(0.001) 0.51(0.011) 0.59(0.005)

JSEM 0.04(0.002) 0.98(0) 0.02(0.002) 1.01(0)
(30/p, 30/q) (200,200,100) JMMLE 0.77(0.016) 0.98(0) 0.46(0.013) 0.31(0.003)

Separate 0.57(0.027) 0.44(0.007) 0.04(0.008) 0.84(0.002)
JSEM 0.05(0.002) 0.97(0) 0.01(0.002) 1.01(0)

(200,200,200) JMMLE 0.76(0.018) 0.98(0) 0.55(0.015) 0.27(0.004)
Separate 0.73(0.023) 0.94(0.003) 0.39(0.017) 0.62(0.011)

JSEM 0.05(0.002) 0.97(0) 0.03(0.003) 1.01(0)

Table of outputs for estimation of lower layer precision matrices over 50 replications.
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Simulation 2: testing

Set K = 2, then randomly assign each element of B1
0 as non-zero w.p. π,

then draw their values from Unif{[−1,−0.5] ∪ [0.5,1]} independently.
Generate a matrix of differences D, where (D)ij takes values –1, 1, 0 w.p.
0.1, 0.1 and 0.8, respectively. Finally set B2

0 = B1
0 + D.

Identical sparsity structures for the pairs of X- and Y-precision matrices.
Type-I error set at 0.05, FDR controlled at 0.2.
Empirical sizes of global tests are calculated from estimators obtained
from a separate set of data generated by setting all elements of D to 0.
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Results

(πx , πy ) (p, q) n Global test Simultaneous tests
Power Size Power FDR

(5/p, 5/q) (60,30) 100 0.977 (0.018) 0.058 (0.035) 0.937 (0.021) 0.237 (0.028)
200 0.987 (0.016) 0.046 (0.032) 0.968 (0.013) 0.218 (0.032)

(30,60) 100 0.985 (0.018) 0.097 (0.069) 0.925 (0.022) 0.24 (0.034)
200 0.990 (0.02) 0.119 (0.059) 0.958 (0.024) 0.245 (0.041)

(200,200) 150 0.987 (0.005) 0.004 (0.004) 0.841 (0.13) 0.213 (0.007)
(300,300) 150 0.988 (0.002) 0.002 (0.003) 0.546 (0.035) 0.347 (0.017)

300 0.998 (0.003) 0.000 (0.001) 0.989 (0.003) 0.117 (0.006)
(30/p, 30/q) (200,200) 100 0.994 (0.005) 0.262 (0.06) 0.479 (0.01) 0.557 (0.006)

200 0.998 (0.004) 0.020 (0.01) 0.962 (0.003) 0.266 (0.007)
300 0.999 (0.002) 0.011 (0.008) 0.990 (0.004) 0.185 (0.009)

Table of outputs for hypothesis testing.

Majumdar and Michailidis Multi-layered Graphical Models May 3, 2018



Future work

Application to multi-omics data;

Beyond pairwise testing: global and simultaneous tests for K > 2;

Multi-level estimation and testing for model assumptions other than
structured sparsity;

Hypothesis testing for complex high-dimensional models;

Non-gaussian data;

Graphical models with non-linear interactions.
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Graphical models with non-linear interactions

Take the multi-layer structure as
a generative model.

Only the top layer is observed,
other layers are composed of
latent variables.

L1 = (L11, . . . ,L1r )T ∼ Nr (0,Σ1);

L2 = φ(LT
1 B) + E,

X = φ(LT
2 C) + F,

E = (E1, . . . ,Eq)T ∼ Nq(0,Σ2);

F = (F1, . . . ,Fp)T ∼ Np(0,Σx ).

where φ is a known activation func-
tion.

X

L2

L1
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Connections

Non-linear generalization of a factor model.

A general version: L2 = f1(L1) + E etc. for unknown function f1, has been
proposed as Deep Latent Gaussian Model (Rezende et al., 2014).

The choice φ(LT B) ≡ φ(L)T B corresponds to Non-linear Gaussian belief
networks (Frey and Hinton, 1999).
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Our plan

Incorporate sparse estimation of the model parameters to model non-linear
interactions.

X X

L2

X

L2

L1

Monte-Carlo EM to maximize a variational lower bound of the likelihood,
Theoretical properties of estimates
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Conclusion

We proposed a general framework to model data in complex hierarchical
structures, with a focus on multi-level biological Omics datasets;

We provide an estimation algorithm and testing methodology for the
parameters involved, with theoretical results ensuring the validity of the
methods;

The general nature of the work leaves many directions for future
developments.
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